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NATURAL CONVECTION FLOW IN A FINITE, R~~ANGULAR SLOT 
ARBITRARILY ORIENTED WITH RESPECT TO THE GRAVITY 

VECTOR 
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University of California, Los Angeles. California 90024, U.S.A. 

(Received 13 December 1972 and in revisedform 30 June 1973) 

Abstract-Solutions to the stationary two-dimensional equations of motion governing natural convection 
flow of a large Prandtl number Boussinesq fluid contained in a differentially heated inclined rectangular 
slot have been obtained by the Galerkin method. The problem has been solved for perfectly conductive and 
adiabatic boundary conditions on the border strips. The range of parameters investigated include: Rayleigh 
numbers up to 2 x 106, asp& ratios from 0.1 to 20, and tilt angles from -30” (bottom plate hotter) to 
+ 75” (top plate hotter). These parameters describe both the conduction and boundary layer regimes. The 
computed flow distributions, inciuding the appearance of multicellular flows, the temperature profiles, and 
the heat transfer predictions compare favorably with experimental results, and with other numerical studies. 

INTRODUCTION 

STEADY two-dimensional natural convection in an 
enclosed vertical rectanguiar cavity with horizontal 
temperature gradients has been the subject of many 
experimental, analytical and numerical studies. Com- 
prehensive reviews of both the experimental and 
theoretical studies have been given by Ayyaswamy [l] 
and Hart [2]. As has been pointed out by both 
Ayyasw~y and Hart, there is a serious lack of infor- 
mation regarding the nature of the flow and the 
associated heat transfer rates for natural convection 
in inclined geometries. 

While the vertical, rectangular cavity problem is in 
itself a challenging one, the generalized problem of 
tilted con~gurations poses a formidable task owing 
to the components of the ~avitational field playing 
a rather significant role in the governing equations. 
The generalized problem is of great interest to 
physicists and engineers since it lends itself to the 
investigation of several limiting cases, such as geo- 
metries that are heated from below or from above, 
in addition to that of the differentially heated vertical 
slot. 

The earliest analytical attack on the vertical geo- 
metry is that of Batchelor [3]. Gill [4] extends this 
work toclearly delineatetheconduction and boundary 
layer regimes. The corresponding definitive experi- 
mental work, dealing with the nature of the ilow 
mechanisms, is that of Elder [S,6]. Eckert and 
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Carlson [7] and Emery 181 have experimentally 
investigated the vertical slot problem and have pre- 
sented heat transfer results extending from the con- 
duction regime to large Rayleigh numbers. Poots [9], 
deVah1 Davis [ 101, Rubel and Landis [l l] and Quon 
[ 121 have approached this problem by numerical 
techniques and have also reviewed related numerical 
studies. 

There have been studies of the effect of vertical 
boundaries in a layer of fluid heated from below by 
Segel[13], Krishnamurti [ 143, Davis [ 151 and Catton 
and Edwards [ 161. 

Prandtl [ 171 has discussed the tilted configuration 
problem in the context of “mountain and valley 
winds”. Gershuni [ 181 investigated the thermal 
stability of such thermally driven flows. However, the 
first and only systematic theoretical and experimental 
analysis of the effect of sloping boundaries on thermal 
convection is that of Hart [2]. Hart describes the 
base flow in a tilted slot essentially in terms of a 
parallel flow model with certain adjustabIe para- 
meters. This description has enabled him to carry out 
the stability analysis of the flow. The adjustable para- 
meters are carefully chosen to satisfy experimental 
observations. Hart, however, does not report averaged 
Nusselt number values. Dropkin and Somerscales 
[19] have presented some experimental data and 
correlations pertaining to the heat transfer coefficients 
for fluids confined between sloping boundaries. The 
range of their experimentation is limited to: (a) the 
bottom plate hotter configuration (vertical case 
excepted) ; (b) high Rayleigh numbers. The absence of 
an aspect ratio dependence in their linaf correlations 
for the Nusselt number and the assumptions of (a) the 
flow being turbulent in every case studied by them, 
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and (b) a uniform hot wall temperature, have been 
questioned by Landis [20]. 

The great practical utility of heat transfer results 
for natural convection flows in tilted configurations 
has been the primary motivation for this work. In 
this paper, the Galerkin method is used to solve the 
coupled non-linear partial differential equations which 
govern the heat transmission in a closed rectangular 
cell having isothermal side walls and inclined at an 
angle 0 to the vertical. The theory has been developed 
for a finite Prandtl number fluid flow but the equation 
set has been solved only in the limit of high Prandtl 
number. The boundary conditions on the border 
strips include both the cases of perfect conduction and 
perfect insulation. Several aspect ratios and Rayleigh 
number situations have been explored in order to 
understand the conduction and boundary layer 
regimes ofnatural convection flow in tilted geometries. 

The method of attack used here has proven to be 
computationally simple, admirably suited for ana- 
lyzing high parameter flow situations and less 
expensive in comparison to several other numerical 
schemes. 

THEORETICAL FORMULATION 

Governing equations 
Consider a fluid space enclosed between two plane 

parallel boundaries inclined at an angle 0 to the 
vertical and by two border strips of length 2h and 
distance 2H apart as shown in Fig. 1. Let TH and 

FIG. 1. Geometry and coordinate system of the rectangular 
region. 

-TH be the absolute temperatures of the hot and 
cold walls respectively. For an incompressible fluid 

contained in such a space the governing equations of 
motion are 

v v = 0, (1) 

Dv 
POE= -Vp+yV2v+pg, 

DT 
- = Kv27; 
Dt 

(2) 

(3) 

p = pot1 - 4, (4) 

where D/Dt is the material derivative, b the dynamic 
viscosity, p, the density, p. is the density at the average 
fluid temperature, K the thermal diffusivity, CI, the 
coefficient of thermal expansion and g the gravita- 
tional acceleration vector. 

Non-dimensionalize equations (l)_(4) by mea- 
suring distances, time, velocity, temperature and 
pressure in terms of h, h’/v, gc$h3/v, Bh and pofiagh2 
respectively. Here v, is the kinematic viscosity and p, 
the temperature gradient. Boussinesq approximation 
enables us to write equations (1)+4) for steady flow as 
follows : 

V.v=O. (5) 

G*(v’ V)v = - Vp + V2v - Tn, (6) 

G*(v V)T = ; V2 T (7) 

where G*( = gc$h4/v2) is the Grashof number based 
on the cavity half width, P( = V/K) the Prandtl number 
and n is the unit vector normal. In this work only two- 
dimensional motion is considered. Hence 

v=iu+kw (8) 

where u and w are the components of velocity and 
i and k are unit vectors in the x and z directions 
respectively. 

Boundary conditions 
Set A = (H/h) to denote the aspect ratio. For rigid 

walls enclosing the fluid the velocity boundary 
conditions are 

u(+l,z) = w(+l,z) =o. 
(9) 

u(x, -&A) = W$x, +A) = 0. 

The temperature boundary conditions on the iso- 
thermal walls are 

T( + 1, z) = F 1 (10) 



Natural convection flow in a finite, rectangular slot 175 

and the conditions on the border strips would be 

T(x, +_A) = --x (11) 

for perfectly conducting strips, while 

aT 

z = 0 
(x. *A) 

(12) 

for perfectly insulating strips. 

Galerkin method of solution 
Represent u, wand T by series sums as follows : 

4x, 4 = f Rf&z(X, 4, (13) 
IN=, 

4x3 z) = 5 B,w,(x, z), (14) 
!?I=1 

Tk z)= -x + f AJY,,(x, z), (15) 
m=1 

where A, and B,,, are undetermined Galerkin coefft- 
cients and II,, w,,, and f, are trial functions chosen to 
satisfy the appropriate boundary conditions of the 
problem. N is a finite number. Let w, = iu, + k w, 

and f. represent one term of the series representations 
above for e and T respectively. The interior method is 
used by taking the vector dot product of the momen- 
tum equation (6) with I, and scalar multiplication of 
energy equation (7) by f. and volume integrating the 
resulting equations. Simplification of the system yields 

G*+[u x (V x u)]dr - jVu,:Vudr - jo;Tndr = 0 
t r 

n = 1,2,...N (16) 

and 

!f,V*TdT - R* jf.(o. V)Tdr = 0 
r 

n = 1,2,...N (17) 

where 7 represents volume and R* the Rayleigh 
number based on cavity half width (= G* . P). 

Introducing the series representations, equations 
(13)(H), of the dependent variables into equations 
(16) and (17) the following coupled set of matrix 
equations for the undetermined Galerkin coefficients 
are obtained 

Equation (23) can now be solved by the Newton- 
Raphson technique for the coefficients A, and B,. 
To evaluate the matrix elements the trial functions 
u,, w,,, and f, must be specified. 

Choice of the trial functions 
By choosing suitable expansions for u, wand f it is 

possible to obtain good approximate solutions. This 
choice is important in as much as a truncation at 
some finite number N is required in any practical 
calculation. It is also necessary to use several sets of 
trial functions and combinations thereof in order to 
accommodate all possible velocity and temperature 
field variations in the fluid space. 

where the standard summation convention is used and The trial-velocity sequence o is constructed from a 

the coefficient matrices are defined as follows: 

a: = - 1 (Vu, :Va,)dz, 

I$,: = j’ (w, cos 0 - u, sin S)J),dr. 

g3) = j (w, cos 6 - u, sin @)xdr, (20) 

tit! =~fnun&, tifi! = jf,v’f,k 
t 

High Prandtl number limit 
In the limit of high Prandtl number, equation (18) 

reduces to 

I$‘B + I($)A = G3) 
mm mnl (21) 

Solving this for B,,, yields 

B 
m 

= __c/-‘L’*‘A + j$klL(3), 
14 4 I (22) 

Substituting equation (22) into equation (19) and 
rearranging results in 

MnmkAJm + &,A,, = B,, (23) 

where 

M nmk = R*GzpL6:’ - ’ L(:k). (24) 

D = L(s) _ R*[LwL(;]-IL(*) nn, *,a nlJ 111, + L~~t!,L’:,’ - l Li3’l 9 

(25) 

and 
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linear combination of orthogonal basis vectors given number 
bY 

0, = curl 1$,(x, z)jj. (27) 
Q 

N” = WL,, - KM) 
(35) 

wherej denotes the unit vector in the y direction and 
II/,, is an arbitrary defining scalar field. In a system of where k is the thermal conductivity of the fluid. Here, 

Cartesian coordinates (x, z), the components of u, are the equivalent definition for the Nusselt number is, 

a*, a+, 
u,= --, 

aZ 
WC=---. 

ax 
(28) 

Even and odd scalar fields that satisfy the boundary 
conditions are 

I//!?? = C&,(x) C,Jz/‘4), (29) 

$j$’ = S&,(x) Sk,,,(z/h (30) 

where 

c.&4 = 
cash (L,,,,x) cos (&,x) --- 
cash bb,.J cos Nr,) ’ 

(31) 

S,_(x) = 
sinh (PJ,X) sin (k,A -___ 
sinh (PJ,,.) sin ~,k,_) 

(32) 

are the beam functions and the superscripts e and o 
indicate even and odd. The roots 1 and p are selected 
to make the derivative zero at x = +l. The roots 
tabulated in appendix V of Chandrasekhar [21] are 
twice the value needed here due to the different 
scaling of the problem. 

The trial functions selected for the temperature field 
are selected to have the same symmetry as the vertical 
velocity component. This selection is made based on 
the symmetry implied by the momentum equation. 
Sets of trial functions are chosen for both types of slot 
end walls, The trial functions are 

fzr(x, z) = sin fJ.,,nx) cos ((2k,, - 1 - a) I z/A) (33) 

and 

J?Zflno)(x, z) 

+A 

Nu= -A dz. (36) 

SOLUTION PROCEDURE FOR THE MATRIX EQUATION 

Consider solving, 

F,(A,) = M,,kAkA,, + D,,A, - E, = 0. (37) 

For a low enough Rayleigh number R we have 

A: @ Ai (38) 

and A, obtained as a solution to the linear equation 

IL/f, = E, (39) 

is a good first approximation. Further improvement of 
this A, at low Rayleigh numbers can now be effected 
by expanding equation (23) in a Taylor series about 
the first approximation. This expansion yields for the 
nth iterate 

where 

A$“+‘) = A(/‘) _ G,jlflj”) (40) 

and 

FI”’ = MijkA~‘,$!’ + DijAy’ - & (41) 

Gij = (Mijk + Mikj)Ap’ + Dij (42) 

The iterative procedure is continued until a desired 
convergence criterion is satisfied. In this work this 
criterion was 

Fp + “(Ak) - Fp’(A,) 

Fr’(A,) 
z 10-6. (43) 

It is found that faster convergence is obtainable at 
= cos ((25,” - 1) :x) sin ((2k, - c() 4 z/A) (34) higher Rayleigh numbers when the preceding lower 

Rayleigh number solution is used as a first guess 
where tl = 0 for perfectly conducting end walls and in equation (23) instead of using the linearized solu- 
a = 1 for adiabatic end walls. In this case the super- tion given by equation (39) to start the procedure each 
scripts correspond to equations (29) and (30). time. 

Nusselt number calculation 
The thermal quantity measured experimentally is RESULTS AND DISCUSSION 

the rate of heat transfer through the cold boundary. Solutions to equation (23) have been obtained for 

If this rate is Q heat units per second per unit depth of Rayleigh numbers based on cavity width (R = 

boundary in the y direction, then a dimensionless g~$(2h)~/v~ = 16R*) up to 2 X lo”, aspect ratios 
quantity describing the heat transfer is the Nusselt (height/width) varying from 02 to 20, angles of tilt 
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from -30” to + 75” (negative angles imply lower 
plate hotter) and for both adiabatic and perfectly 
conducting end wall conditions. Successive approxi- 
mations were carried out for increasing values of N up 
to N = 32. Due to physical limitations of computa- 
tional core storage (IBM 360/9 l), solutions for N > 32 
were not run. 

With N = 32 difficulties first arose for perfectly 
conducting end walls and large angles of tilt as well as 
with larger aspect ratios. Only those cases which 
yielded meaningful results have been presented. 
Where possible, the results are compared with those 
of other investigators. The agreement is found to be 
very good at low R. At high R, the true solution (or 
solutions) is not precisely known, but the qualitative 
behavior seems to be good. Suffice it to say, that for 
high R, more precise heat transfer results and flow 
characteristics can be obtained for values of N > 32. 

Heat transfer results 
The averaged Nusselt number for a rectangular 

region with insulating end walls and 0 = -3o”, 
-20” and 0” is given in Fig. 2. Solutions for tilt 
angles Q < -30” have not been obtained. For larger 

in this region. Admittedly, in the limit of an infinite 
Prandtl number fluid flow one can speculate that 
these instabilities would occur at somewhat higher 
Rayleigh numbers in comparison to those observed 
for a finite Prandtl number situation by Hart. Thus, it 
might be argued that meaningful two-dimensional 
solutions could be obtained for comparatively smaller 
tilt angles than can be done in the case of a finite 
Prandtl number fluid flow situation. To be on the 
conservative side of the foregoing situation, it was 
decided that 8 < -30” not be investigated. For 
8 = -3o”, a comparison with the experimental 
findings of Dropkin and Somerscales [ 191 is possible. 
However, there seems to be a discrepancy between the 
results to the extent that the slope of results presented 
in [ 191 is large compared with those obtained in this 
work. Such a discrepancy seems attributable to a 
change in aspect ratio in order to effect a change in 
Rayleigh number as is often done in experimental 
work. It should be noticed that decreasing the aspect 
ratio (for large enough aspect ratios) at constant 
Rayleigh number effects an increase in the Nusselt 
number. Further, with smaller aspect ratios (< 1) the 
results exhibit a decreased heat transport with de- 

A =“,,I 1 

FIG. 2. Heat transfer across a two-dimensional rectangular region with insulating end walls for 
tilt angles 0 = - 30”, - 20”, 0”. 

negative tilt angles, longitudinal roll instabilities (see, creasing aspect ratio. A noteworthy feature is that for 
Hart [2] or Kurzweg [22]) manifest themselves at both 0 = - 20” and 0 = - 30”, excepting for a small 
small R(R, 2 1707/sin ) f3(, for 8 < 0”), which neces- change in magnitude, the heat transfer results remain 
sitate a fully three-dimensional study of the governing essentially the same. 
equations before meaningful results can be obtained As stated earlier, the vertical configuration has 
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been the subject of numerous investigations. Several 
comparisons with the present work are possible and 
Fig. 2 shows results reported by related studies. The 
experimental results of Emery [8] compare very well 
while those of Dropkin and Somerscales [19] still 
show some discrepancy. The present results some- 
what overpredict the values measured by Eckert and 
Carlson [7] at an aspect ratio of 10 with air (P = 07) 
as the confined fluid. The over-prediction is perhaps 
due to the infinite Prandtl number assumption made 
in this analysis. Quon [12] has demonstrated that an 
infinite Prandtl number analysis is invalid for Prandtl 
numbers of this order. Comparisons with the numeri- 
cal results reported by deVahl Davis [lo] show agree- 
ment for an aspect ratio of 5 while those for a square 
cavity do not agree as well. The preliminary work 
done by Denny [23] using a finer grid spacing in a 
similar numerical investigation at unity aspect ratio 
has indicated that perhaps the disagreement is 
attributable to inaccuracies associated with deVah1 
Davis’ choice of grid spacing. Quon [ 121 has obtained 
a single value for the Nusselt number at a Rayleigh 
number of 8 x lo’, and an aspect ratio of one. The 
results presented in this work are thought to be 
possibly less accurate to theextent that for calculations 
at large Rayleigh numbers ( _O(106)) the number of 
terms (N = 32) used in the Galerkin expansion are 
not quite sufficient. 

Figure 3 presents results for a rectangular region 
with insulating end walls and 0 = 30”. 60” and 75”. As 

the angle increases, the effect of changing the aspect 
ratio is rather pronounced. For aspect ratios less 
than unity the results separate further with increasing 
angles of inclination. The results for the low aspect 
ratio cases indicate that with decreasing aspect ratio 
(for low enough aspect ratios), the convective heat 
transport is significantly decreased. 

Heat transfer results for a rectangular region with 
perfectly conducting end walls, at 0 = O”, 30” and 60”, 
are presented in Fig. 4. At 0 = 0” and 30” the results 
for perfectly conducting end wall configurations show 
decreased heat transfer compared to those of adiabatic 
end walls. As would be expected, this effect is much 
more pronounced at low aspect ratios. However, at 
0 = 60” there is a reversal of this effect and, for 
particular values of A, the heat transfer is higher for the 
case of perfectly conducting end walls. Examination of 
local heat transport (see Fig. 5) on the heated wall 
shows this effect. For large aspect ratios (A > 5) and 
~9 = O”, the local heat transport is essentially the same 
for both types of end walls, except near these bound- 
aries. As the angle of tilt is increased, the differences 
become more noticeable. For 0 = 0” and unit aspect 
ratio the results for perfectly conducting walls fall 
below those for adiabatic end walls (see Fig. 5b), 
whereas for large positive angles, 0 = 60”, this is 
reversed (see Fig. 5d). This is due to the more pro- 
nounced thermal interaction at the perfectly con- 
ducting boundaries as the tilt angle is increased. 
For small aspect ratio (A = 0.2), within the range of 

RoyleIgh number, R 

FIG. 3. Heat transfer across a two-dimensional rectangular region with insulating end walls for 
tilt angles f3 = 30”, 60”, 75”. 
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Rayleigh number, R 

FIG. 4. Heat transfer across a two-dimensional region with perfectly conducting end walls for 
tilt angles B = O”, 3W, 60”. 

-06 

FIG. 5. Temperature gradient at the hot wall for R = 300000. 

parameters investigated in this work, adiabatic end 
walls allow greater heat transport. Further, the effect 
of end walls is much more sensitive to the angle of tilt 
in this case. 

Comparison with deVah1 Davis [IO] and Poots 
191, for 8 = 0” and A = 1, is shown in Fig 4. The 
comparisons are good and might lead one to speculate 
that finite difference procedures have better conver- 
gence properties for perfectly conducting end walls 
than for insuIat~g end walls. However, even if such 
convergence properties hold true for 0 = O”, it seems 
unlikely that similar properties exist for large tilt 
angles. For both methods this is due to numerical 
difftculties inherent in accommodating thin boundary 
layer regions adjacent to perfectly conducting end 
wails. 

Some local Nusseh number results at a Rayleigh 
number of 3 x 10’ are shown in Fig. 5. Generally, 
for both positive and negative angles of tilt there is a 
decrease in the local Nusselt number, the effect for 
positive angle (heated from above) being greater. The 
effect of negative angle of tilt is somewhat compen- 
sated in the case of adiabatic end wails since the heat 
transport at the top of the heated wall is increased 
(the top is denoted by z/A = 1). For positive angles a 
decrease in the heat transport at the top is observed. 
This is thought to be due to the density stratification 
causing a relatively stagnant, constant temperature 
region in the comer adjacent to the heated wall. The 
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essential difference between the transport mechanisms 
in this region for perfectly conducting and adiabatic 
end wall cases is due to the onset of secondary flow for 
large enough R in the former case, The driving 
mechanism for this secondary flow seems clear. The 
trend toward thermal stratification causes an adverse 
temperature gradient adjacent to the perfectly con- 
ducting end wall. As in the classical Benard problem, 
this adverse temperature gradient seems likely to 
cause instability to secondary flow. Although it is not 
clear whether or not this secondary flow would be 
three-dimensional, the presence of such an instability 
in relatively constant temperature region would 
perhaps not significantly effect the overall heat 
transport. Due to this boundary effect it seems prob- 
able that, if and when instability to a three-dimensional 
flow does occur, it will occur at a lower R in the case of 
perfectly conducting end walls. 

Temperature field 
Typical temperature profiles at the cavity mid- 

height and cavity center-plane, for a Rayleigh number 
of 3 x 105, are shown in Figs. 6 and 7. Due to the 
centro-symmetry property of the solutions (about 
x = z = 0), only the profiles for the left hand half at 
midheight (heated wall), and upper half at the 
centerplane are shown. 

At the cavity midheight the trend toward pure 
conduction is indicated for larger tilt angle, and small 
aspect ratio. Near 8 = 0” the deviation from con- 
duction is greatest for unit aspect ratio, while for large 
tilt angle it is greatest for larger aspect ratio. As the 
results for Nusselt number indicate, the overall effect 
of thermal end wall conditions is most pronounced for 
large tilt angles and small aspect ratio. For A 3 3 all 
of the results in Fig. 6 show larger deviation from 
conduction when the end wall is insulating. For 
A < 1, a reversal of this effect is observed as the angle 
of tilt is increased. Again, this is due to increased 
thermal interaction between the end and side walls 
as the angle of tilt is increased in the case of perfectly 
conducting end walls. 

The trend toward vertical, thermal (i.e. density) 
stratification is shown in Fig. 7. Hart [2] discusses 
this stratification for large aspect ratio. In his approxi- 
mate stability analysis he assumes a parallel flow 
model with constant longitudinal temperature gra- 
dient (near the midheight), and reasonably accurately 
predicts transition. The results presented here do 
indicate a trend toward this type of stratification for 
large aspect ratio; they are however, not conclusive. 
More accurate solutions, using N > 32, are necessary 
to assess the accuracy of Hart’s assumption. 

I 1 I I I J 

t I I 1 I 

-0.8 -04 0 

Transverse coordinate, X 

FIG. 6. Temperature at the cavity midheight, z = 0, for 
R = 300000. 

more pronounced for aspect ratios near one, except 
for large tilt angles, where an aspect ratio of three 
shows it to be the largest. There seems to be a trend 
towards increasing longitudinal temperature gradient 
proceeding upward from midheight as aspect ratio 
is increased. This effect is significant at 0 = O”, where 
A = 1 shows moderate increase and A = 5 shows 
substantial increase. At 0 = 30”, A = 1 shows a 
monotonically decreasing gradient, as does A = 3 at 
(? = 60”, for the case of adiabatic end walls. 

When the end walls are perfectly conducting, in 
most cases, the amount of thermal stratification is 
considerably less, although greater changes in 
gradient are present throughout the core region. 
Also, with increasing aspect ratio there exists a thin, 
adverse temperature gradient (thermal boundary 
layer region) near the end walls. This gradient is 
further increased with angle of tilt. The magnitude of 
the “boundary layer Rayleigh number” for various 
aspect ratios has not been presented. It is thought that 

In the core, the vertical thermal stratification is the number of terms necessary to accurately predict 
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(d) 

Longitudinal coordinate, Z/A 

FIG. 7. Temperature at the cavity midplane, x = 0, for 
R = 3ooooo. 

these quantities for large aspect ratio (R, is prono:- 
tional to S3) exceeds N = 32. In any case, as previously 
stated, the effect of such an instability on the average 
heat transport is probably small. 

Velocity fields 
The longitudinal (w) and transverse (u) velocity 

components at the cavity midheight (z = 0), and 
centerplane (x = 0) for a Rayleigh number of 3 x lo’, 
are shown in Figs. 8-l 1. Here again, due to the centro- 
symmetry property, only fields on one half of the 
plane are presented. 

For aspect ratios of order one or smaller, the 
existence of a velocity boundary layer near the heated 
wall is noticeable. This is most evident for the case 
9 = 0” and A = 1 (see Fig 8). As the aspect ratio is 
increased, the profile approaches the classical “cubic 
velocity profile” (within the two-dimensional, large P 
imposition) for all tilt angles. As discussed previously, 
these do not necessarily represent physically realizable 
solutions of the equations of motion for 8 < 0” 
(see Hart 121). For larger R it seems likely (by examina- 
tion of smaller R results) that the boundary layer 
effects should be greatest for smaller aspect ratios. 
Except for A = 0.2, the results with perfectly con- 
ducting end walls show larger longitudinal velocity 
component at z = 0 than do those with adiabatic end 

e.6OJdl 

i-- 
- PC 
---- Ad I 

Transverse coordinate , x 

FIG. 8. Longitudinal velocity, w,, at the cavity midheight, 
z = 0, for R = 300ooo. 

walls, the difference increasing with tilt angle. Here 
again, thermal interaction between the side and the 
perfectly conducting end walls increases with tilt 
angle, even though the flow magnitude decreases with 
tilt angle for both perfectly conducting and adiabatic 
end walls. 

With reference to Fig. 8, a longitudinal flow reversal 
near the cavity center may be noticed, this reversal 
being greater for adiabatic end wall conditions. 
However, with increasing tilt angles (for the para- 
meters investigated here) the flow is less prone to flow 
reversals and in fact, the reversed flow is at most an 
order of magnitude smaller than the primary flow. 
The character of the longitudinal velocity component 
at the centerplane (see Fig. 9) indicates the likely 
formation of a secondary flow together with an 
increasingly skewed velocity field as angles of tilt are 
increased. These effects are quite large for large aspect 
ratios and large angles of tilt. The perfectly conducting 
end wall conditions compared to the adiabatic serve 
to inhibit these effects for smaller aspect ratios and 
tilt angles, while for larger aspect ratios and tilt 
angles the opposite seems to hold true. 

The character and magnitude of the transverse 
velocity component at the centerplane is highly 
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Longttude coordlnote. Z/A 

FIG. 9. Longitudinal velocity, W, at the cavity midplane, 
x=O.forR=300000. 

dependent on the parameters of the problem. For 
tilt angles near vertical, transverse flow reversal at the 
midplane exists at large aspect ratio, for both end wall 
conditions (see Fig. 10). At large aspect ratio, the 
secondary flow appears in the interior with a vertical 
cell wavelength of approximately one third the cavity 
height. As the angle of tilt is increased the magnitude 
of the velocity component decreases, and the charac- 
ter of the flow depends, to a much larger extent, on 
the thermal end wall conditions. At 0 = 60”, for 
A = 1 and perfectly conducting end wall conditions, 
a distinct multicellular flow exists. For adiabatic end 
walls, such a distinct flow reversal is not noticeable 
under similar conditions. The transverse velocity 
component at midheight (Fig. 11) seems less likely to 
lead to a multicellular flow than does the longitudinal 
component at the centerplane. An examination of the 
magnitude of the transverse component, however, 
reveals an increasingly skewed velocity field with 
increasing tilt angles. It can be conjectured from a 
study of these effects that a distinct transverse wave- 
length cellular motion is unlikely at any aspect ratio, 

(bl 

Cd) 

Longitudinal coordinate, ‘?/A 

FIG. 10. Transverse velocity, U, at the cavity midheight, 
x = O.forR = 300000. 

as contrary to the likelihood of the longitudinal 
wavelength cellular motion for large aspect ratios. 

SUMMARY AND CONCLUSIONS 

Solutions to the stationary, two-dimensional equa- 
tions of motion governing large Prandtl number 
Boussinesq fluid flow in rectangular geometries have 
been obtained. Several aspect ratios, Rayleigh num- 
bers, and angles of tilt have been investigated for both 
perfectly conducting and adiabatic end wall 
boundaries. 

As previously stated, the motivation for this work 
stems largely from a desire to obtain heat transport 
results in inclined geometries. It was found that the 
flow structure and heat transport were dependent on 
aspect ratio, angle of tilt and Rayleigh number in a 
very complex way. Any correlation for Nusselt 
numbers in tilted geometries should reflect this 
complexity. An examination of the results obtained 
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Tronsversa coordinate, x 

FIG. 11. Transverse velocity, u, at the cavity midplane, 
z = 0, for R = 3OOooO. 

here, in comparison with those of Dropkin and 
Somers&es, points to this fact. An attempt has not 
been made to express these. results in terms of empirical 

fit correlations for this same reason. 
The effect of sloping boundaries and the associated 

delineation of the conduction and boundary layer 
regimes in the fluid flow are discernible from an 
examination of the flow field results presented. It can 
be seen that with increasing Rayleigh numbers the 
heat transported by convective mechanisms, in 
comparison to that of conduction, is larger. Skewness 
of velocity profiles is ascribable not only to increasing 
shear layers near the wall with increasing Rayleigh 
numbers but also to the significant role played by 
the components of the gravitational field that serve 
as driving mechanisms. The limiting case of a tall, 
narrow slot yields essentially a cubic velocity profile. 
It is conjectured, therefore, that a stability analysis 
for large aspect ratio, based on a parallel flow model 
with adjustable parameters as done by Hart [2], 
should be capable of predicting transitions quite 
effectively. 

The heat transport results for tilt angles where the 
top plate is hotter provide a new insight into the so- 
called convectively stable regime. It can be seen that a 
large transport of heat is associated with the convec- 
tive mechanism even in this case. It is clear that 
thermal instabilities associated with regions of ad- 
verse temperature gradient, due to the presence of 
conducting end walls, should be possible even in the 
case of top heating. An investigation of these effects, 
which would be more pronounced for the case of 
finite Prandtl number situations, warrants further 
important study. 

End wall effects are visible from an examination of 
the corresponding temperature and flow fields. For 
large aspect ratio, decreasing the aspect ratio induces 
a transverse fluid motion which serves to increase 
convective heat transport. The presence of the end 
walls also serves to inhibit longitudinal fluid motion, 
and for small enough aspect ratio these two mecha- 
nisms compensate each other resulting in a decrease 
in the overall heat transport. These compensating 
effects result in a maximum heat transport at some 
finite aspect ratio for all tilt angles. 
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CONVECTION NATURELLE DANS UNE FENTE FINIE ET RECTANGULAIRE, 
ARBITRAIREMENT ORIENTEE PAR RAPPORT A LA VERTICALE 

R&urn6 an a obtenu par la mtthode de Galerkin les solutions des equations du mouvement permanent 
et bidimensionnel de convection naturelle d’un fluide de Boussinesq a grand nombre de Prandtl contenu 
dans une fente rectangulaire inclinee differentiellement chauffee. Le probltme a Cte rtsolu pour des con- 
ditions aux limites de parois parfaitement conductrices ou adiabatiques. Les domaines de variation des 
paramttres sont les suivants. nombre de Rayleigh inferieur a 2 106, facteur de forme entre 02 et 20, angle de 
calage depuis - 30” (plaque inferieure la plus chaude) jusqu’a + 75” (plaque superieure la plus chaude). Ces 
paramdtres decrivent aussi bien les regimes de conduction que de couches limites. Les distributions cal- 
cul&es numtriquement qui comprennent les tcoulements multicellulaires, les protils de temperature et les 
flux thermiques s’accordent avec les resultats experimentaux et avec d’autres etudes numeriques. 

NATURLICHE KONVEKTION IN EINEM ENDLICHEN. RECHTECKIGEN SPALT MIT 
BELIEBIGER ORIENTIERL’NG IN BEZUG AL!F DEN SCHWERKRAFTVEKTOR 

Zusammenfassung-LGsungen der stationlren, zweidimensionalen Bewegungsgleichungen, welche die 
natiirliche Konvektion einer Boussinesq-Fltissigkeit grosser Prandtl-Zahl in einem differential geheizten, 
geneigten rechteckigen Spalt beschreiben, wurden mit der Galerkin-Methode erhalten. Das Problem wurde 
ftir vollkomraen leitende und adiabate Randbedingungen an den Seitenstreifen geliist. Der untersuchte 
Parameterbereich umfasst Rayleigh-Zahlen bis 2.106, Seitenverhlltnisse zwischen 0,2 und 20 und Neigungs- 
winkel zwischen - 30” (untere Platte beheizt) und + 75” (obere Platte beheizt). Diese Parameter beschreiben 
sowohl den Leitungs- als such den Grenzschichtbereich. Die berechneten Stromungsverteilungen, ein- 
schliesslich dem Auftreten von Vielzellenstriimungen, die Temperaturprofile und die Voraussage tiber den 
WBrmetibergang stimmen sehr gut mit experimentellen Ergebnissen und anderen numerischen Berech- 

nungen tiberein. 

CBOBO~HOKOHBEKTHBHOE TEqEHLIE B IIIEJIH IIPfiMOYI’OJIbHOI’O 
CEYEHMFI KOHE4HbIX PA3MEPOB, HPOB3BOJIbHO OPBEHTMPOBAHHOH 

OTHOCBTEJIbHO BEHTOPA CklJIbI THNECTEI 

AHHoTaqnsr-MeToAoM raJlepW%Ha IIOJIyqeHbI PeIUeHHR CTaIJHOHapHbIX AByMepHbIX ypaB- 

HeHIlt ABPI%eHHH, OlTMCbIBaIOIUMX CBO6OAHOHOHBeKTHBHbIe TegeHHFl HEHAHOCTH ByCCllHeCKa 

IIpI4 60JIbIIIOM WiCJIe npaHATnR B IIpHMOyrOJIbHOfi HepaBHOBeCHO HaPpeBaeMOfi HaHJIOHHOt 

wem.3ana9aperueHa~nfl aAHa6aTMYeCHIiX rpamrHbIxyc~o~Id M~IR~CJIOBM~~ MaeanbHoft 

TeIIJIOIIpOBOAHOCTM Ha KpOMKaX IIleJIH. kiCCJIe~OBaHHJ2 lIpOBOA&VIMCb B CZIeAyIO~tlX ALla- 

IIa30HaX IIapaMeTpOB: 'IHCJIO PeJIeR x.0 2 Xl@, OTHOCBTeJIbHaR AJIMHa OT 0,2 20 20; YPOJI 

rrartnona OT -30” (HI~wHHR nnacrnna rennee) ~0 t-75” (sepxrrmr n;racTnrra Tennee). ~TII 

IIapaMeTpbI OFIllCbIBaIOT peH(MMbI TeIIJIOIlpOBO~HOCTPI H IIOrpaHMYHOFO CJIOH. PaCCWTaHHbIe 

pacnpeneneenn norona, nnnroqan n03ukrnkronertne ~rrornqecrbrx noTonon, npo@mnn TeMne- 
paTypbI II K03~@I~~eHTbI TeIUIOO6MeHa, XOpOILIO COrJIaCyIOTCFI C aKCIIepl4MeHTaJIbHbIMi~ 

JaHHblMII II r[pyrIlMH YMCJIeHHbIMH PaCWTaMIl. 


